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Abstract 
Methods are given for numerically solving a generalized version of the Feynman-Kac partial 
differential equation.  The solution is expressed as a linear combination of piece-wise Hermite 
quintic polynomials.  This twice-differentiable representation has the attributes of being a high-
order method that allows easy evaluation of the solution and certain of its partial derivatives.  
The time-dependent solution coefficients are computed by finite element Galerkin procedures.  
Boundary values and initial conditions are required.   
 
Many significant problems in financial modeling can be expressed as particular choices of 
coefficients, initial conditions, and boundary values.  That fact allows this Feynman-Kac solver 
to be used in many financial modeling applications.  These include the Black-Scholes models 
with European type or American type exercise opportunities on Calls or Puts. 

Introduction 
This report2

Feynman-Kac
 describes mathematical and numerical software methods for solving the 

generalized 3

 
 partial differential equation 

( ) ( ) ( ) ( )
2 ,

, ( , ) ( , , ), , , { , .}
2t x xx t
x t ff x t f f x t f f x t f x T p x f etc

t
σ

µ κ φ ∂
+ + − = = =

∂
 

Equation 1. Feynman-Kac (F-K) Equation with Additional Terms fκ andφ  

 
The equation is generally solved by integrating backwards, starting at t T= .  Thus the 
function ( )p x  is a terminal condition.  Numerical values are computed on a compact 

interval[ ]min max,x x .  Boundary conditions are required: 

 

( ) ( ) ( ) ( ) min max, , , , , &x xxa x t f b x t f c x t f d x t x x x+ + = =  

Equation 2. F-K Vector Boundary Conditions 

The boundary conditions can be vectors of dimension 1, 2 or 3.  Details on their form and 
smoothness requirements are given below in the section on boundary conditions. 
 
This F-K equation includes a number of interesting models as special cases.  One of our primary 
interests is the Black-Scholes equation for the value ( ),f S t  of an option [1]: 

 

                                                      
2 This work benefited by discussions with Fred Krogh, Gerald Hanweck, John Brophy and  
Martin Preiss. 
3 http://en.wikipedia.org/wiki/Feynman-Kac_formula 

http://en.wikipedia.org/wiki/Feynman-Kac_formula�
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( )
2 2

2
min max invest expiry2 0, ,

2
f f fr D S S rf S S S t t t
t S S

σ∂ ∂ ∂
+ − + − = ≤ ≤ ≤ ≤

∂ ∂ ∂
 

Equation 3. Black-Scholes Model, a Special Case of F-K 

 
Here r is the instantaneous risk-free interest rate, D is the continuous dividend of the 
instrument, andσ is the continuous positive volatility4

A part of this report gives numerical results for particular choices occurring in the Black-Scholes 
model. The CNL functions imsl_f_feyman_kac and imsl_f_feynman_kac_evaluate 
(documented in [12]) are used to compute these models. 

 of that instrument.  There are also 
boundary conditions, as in Equation 2, which will be defined and used as required.  

Section 1 – Finite Elements and Galerkin Methods 
The mathematical methods we use for solving F-K equations are well-known and tested (See 
[2], p.89).  We give a detailed description of the finite elements and the construction of the 
matrices that arise when solving the Differential-Algebraic equations (DAE) for the solution. 

The Finite Elements 
This development begins with a grid of points or a partition of the interval [ ]min max,x x .  Write 

this grid as ( ) ( )min 1 2 maxmx x x x x= < < < = .  We see that it is a decomposition of the interval 

into int 1N m= − abutting subintervals.  For each fixed t , on each subinterval, the unknown 

solution is given by a Hermite quintic polynomial. An issue that we do not discuss is placement 
of these grid points.  The development given here is a more general method than that found in 
[11].   

 
The polynomial is represented by six basis polynomials.  Thus in the interval 
 

[ ] ( ) [ ]1 1, , , / , 0,1 ,i i i i i i ix x x h x x z x x h z+ +∈ = − = − ∈  

 
the function and its first three derivatives are given by 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 0 1 1 1 2 1 2
2 2, 1 1 1i i i i ii i i i if x t f b z f b z b z b z h b z h f b zh f h f f+ + +

′′= + − + − + −′ ′′′− +

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 0 1 1 1 1 2
1 2 2

2, 1 1 1( )i i i i i ix i i i i if x t f b z f b z f b z f b z h f b z h f b zh h h+ + +
− ′ ′ ′ ′ ′ ′ ′′ ′= − + − + −′ ′′− + −

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 0 1 1 1 1
2 2 2

2 2, 1 1 1( )i i i i i ixx i i i i if x t f b z f b z f b z f b z h f b z h f b zh h h+ + +
− ′′ ′′ ′′ ′ ′′ ′′ ′′ ′′= − + − + −′ ′′+ − +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
3 3 3 3 3 33 2 2

0 0 1 1 2 2, 1 1 1( )i i i i i ixxx i i i i ix t f b z f b z f b z f b z h f b z h f b zf h h h+ + +
− ′ ′′= − + − + −′ ′′− + −  

Equation 4. Partial Derivatives of the Piecewise Solution 

                                                      
4 In the F-K equation identify the general term ( ),x tσ with the Black-Scholes volatility  

factor multiplied by the price—i.e. Sσ . 
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For our purpose the values , 1 1, 1, , ,i i i i i if f f f f f+ + +′ ′′ ′ ′′ are time-dependent coefficients associated with 

that interval.  The local error term is ( )6
iO h .  The basis functions and their partial derivatives 

are given by the formulas 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

35 4 3 2

0

35 4 3

1

35 4 3 2 2

2

2 2 2

0

2 2

1

2 3 2
0 0 0

2 3
1 1

6 15 10 1 1 6 3 1 ,

3 8 6 1 3 1 ,

1 1
3 3 1

2 2

30(1 ) ; 60 (2 3 1);

(1 ) (15 2 1); 12 (1 )(5 3);

60 6 6 1

b z z z z z z z

b z z z z z z z z

b z z z z z z z

b z z z b z z z z b z

b z z z z b z z z z b z

b z z

= − + − + = − + +

= − + − + = − +

= − + − + = −

′ = − − = − − +

′ = − − − − = − −

′′ = = − − +

= −

( ) ( ) ( ) ( ) ( )2 2

2

2

2 3 2
2 2

1
(1 ) (5 2); (1 )(10 8 1);

2

12(15 16 3)

3 10 12 3b z z z z z z z

z z

b b z z z′ = − − − = − − +

− +

= − − +

 

Equation 5. Hermite Quintic Basis Functions and Three Derivatives  
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Figure 1. Graphs of Hermite Basis Functions and Two Derivatives 
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During progression from one interval to the next, there is overlap with three coefficients from 
the adjacent interval.  This observation and the formulas for the derivatives show that for each 
fixed t , the function ( ),f x t is continuous at the interior grid points and has two continuous 

derivatives with respect to x .  Formulas for the piece-wise quadratic third derivatives are 
included here, even though that function is no longer generally continuous at the interior 
points.  This third derivative function may be of interest to users.  The total number of 
parameters on this grid is ( )int3 1N + .  The rationale for choosing this set of elements is based 

on these observations: 
 

• Since the local error term is of order ( )6
iO h , this translates into fewer unknowns than a 

finite difference method.  Typically there is high accuracy when using even a modest-
sized grid.  This should result in efficient computational algorithms since the size of the 
system of differential-algebraic equations and thus the associated linear algebra will be 
of a smaller dimension.  There is also special banded structure for the matrices of the 
linear algebra.  This allows for the use of tailored banded matrix linear system solvers 
and matrix-vector products. 

• The functions and intrinsic continuous partial derivatives { , , , , , }x xx t tx txxf f f f f f  are 

available by direct evaluation of the solution and its derivative functions.  These 
additional partial derivative values are often required by users and they can be obtained 
at essentially no extra cost in computing time.  In the case of the Black-Scholes model 
these functions include many of The Greeks5

x

. The CNL function 
imsl_f_feynman_kac_evaluate can compute these derivatives, which we call the 
Intrinsic Greeks. Evaluation can occur for any set of values of  at a given t .  There is no 
resulting sub-problem such as interpolation.  The evaluator does that for the user. 

• For some applications it is necessary to interpolate in the orthogonal direction for the 
solution as a function of t  with x  fixed. A way to do this is assemble values { , }tf f  at a 

grid of t  values at a fixed x . Then perform Hermite cubic interpolation at any set of 
values within this grid of t  values.  This 1C  cubic has a local error of ( )4

iO t∆  and is given 

by the formulas 
 

( ) ( ) ( ) ( ) ( )
( ) ( )

2 2
0 1

2
0 1

ˆ ˆ1 2 1 , 1
ˆ ˆ6(1 ) , 3 4 1

b z z z b z z z

b z z z b z z z

= + − = −

′ ′= − − = − +
 

 
To interpolate at any [ ]1,i it t t +∈  compute 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

0 1 0 1 1 1 1
ˆ ˆ ˆ ˆ, 1 1

,

, ,

/ , , .

i i i i

i

i i i i i

i i i

f x t f b z f b z f b z f b z

f
f x t

t t t t t

z t t t etc
t

+ + +′= + − + −′∆ − ∆ ∆ = −

∂′= − ∆ =
∂

 

                                                      
5 http://en.wikipedia.org/wiki/The_Greeks 

http://en.wikipedia.org/wiki/The_Greeks�
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• The complexity of these representations and the quintic basis functions are a concern.  
Verifying the formulas was aided by the use of algebraic manipulation software.  The 
Hermite quintic formulas have been coded in imsl_f_feynman_kac_evaluate.  Testing 
with the Black-Scholes equation has yielded results consistent with analytic solutions.  

The Galerkin Process and Matrix Assembly 
Using a development similar to that of [2], p. 116, write the F-K equation in divergence form 
 

( ) ( )

( ) ( )

2

2

,
( ) ( , ) ( , ) 0

2

,
( , ) ( , ) ( ) ( , ) 0, { }

2t x x x

x t
f x t x t f

t x x x

x t
R x t f x t f f x t f

x

σ
φ µ σσ κ φ

σ σµ σσ κ φ σ

  ∂ ∂ ∂ ∂′Λ − ≡ + − + − − =   ∂ ∂ ∂ ∂  
∂′ ′≡ + − + − − = =
∂

. 

 
By adding the piece-wise definitions we may arrange the unknown solution function as the 

series ( ) ( )
( )

( )
int3 1

1

,
N

i i
i

f x t y t xβ
+

=

= ∑ .  The coefficient functions are defined by re-labeling: 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 3 1, , , , , ,x xxy t f x t y t f x t y t f x t= = =  etc.  Then impose the Galerkin 

orthogonality conditions ( ) ( )max

min
int( , ) 0, 1, ,3 1

x

jx
R x t x dx j Nβ = = +∫  .   Expand and integrate by 

parts the third term in each expression to yield 

( ) ( ) ( ) ( ) ( )
max

max max

min min
min

2 2 2, , ,
( ) ( ) ( )

2 2 2

x
x x

x x j x j x jx x
x

x t x t x t
f x dx f x f x dx

σ σ σ
β β β ′= −∫ ∫ . 

Collect all terms after performing this integration to get five matrices contributing to the DAE 

( ) ,My Ny Ry Ky Qy p My N R K Q y p′ ′+ − − + − = + − − + −          

where       

( ) ( )

( )

( ) ( )

int

int

1 3 1

1 3 1

2

2 2
max min

max max min min

: ( ), , ( ) , ,

: ( ) ( ), , ( ) , ,

, ( ) , ,
2

, ,
, ( ) ( ) ( ) ( ) ,

2 2

T

N

T

N

T T T

T T T

dyy y t y t y t y
dt

dx x x
dx

M N R

x t x t
K Q x x x x

p

ββ β β β β

σββ µ σσ ββ β β

σ σ
κββ β β β β

φ

+

+

  ′= = = 

  ′= = = 

′ ′ ′ ′= = − =

′ ′= = −

=

∫ ∫ ∫

∫



  




  



     

     

 .β∫ 

 

 
The integration is approximated using Gauss-Legendre (G-L) quadrature normalized 
to the interval[ ]0,1 , see [3], p. 390.  The leading matrix term M will be the integral 

of products of resulting degree 10.  It will not be dependent on t  nor will it depend 
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on any coefficient in the F-K equation.  This means it will only have to be computed once.  To 
exactly integrate this symmetric matrix an order 6 G-L formula is used on each subinterval.  This 
is because the error term for G-L quadrature has a factor involving the 12-th derivative.  This 
will be identically zero on each subinterval. However using just an order 5 formula gives an 
error term involving the 10-th derivative which is a non-zero constant.  [See [3], (8.5.6), p. 391.]  
The user can reset the order of the G-L formula to a higher or lower value to deal with 
particular behavior in the remaining coefficients.  Note that the exact form of the polynomial 
representation for ( )j xβ  is not an issue.  Only the 6 evaluations are required to integrate the 

leading term M exactly, apart from rounding errors. 
 
With the particular basis of quintic splines, the only non-zero value of ( )maxj xβ is at the right 

end, or ( )
int3 3 max 1N xβ + = , and for ( )

int int3 2 maxN Nx hβ +′ = . Similarly, the only non-zero value of 

( )minj xβ  is at the left end, or ( )1 min 1xβ = , and for ( )2 min 1x hβ ′ = . Thus we have the last 

component of Q y  with the value 
( ) ( )

int int

2
max

3 2

,
2N N
x t

h y t
σ

+  and the first component with the 

value 
( ) ( )

2
min

1 2

,
2
x t

h y t
σ

− . Notice that the boundary conditions have not yet been used in 

formulating the DAE.  We then consider the intermediate problem DAE 
 

0,{ , }dyMy Ny Ry Ky Qy p My Py p y p
dt

φβ′ ′ ′+ − − + − ≡ + − = = = ∫




            

Equation 6. DAE of Coefficients -- No Boundary Conditions Provided 

For computational efficiency it is important to note when the matrix P N R K Q= − − +  has 
dependence on t . If there is no dependence this matrix can be computed once, at the outset of 
integration.  It is thereafter not necessary to re-compute it at every time step.  If any coefficient 
in the set { , , , }µ κ σ σ ′  has time dependence then some terms of P must be re-computed at 
each time step.  The Black-Scholes Equation 3, with constant values of , ,D r σ  is a case where 
there is no time dependence in the accumulated element matrices.  Also note that in this 
problem an order 6 G-L formula exactly integrates each term of the matrix P  for the Black-
Scholes model with constant { , }r σ .  This follows from the fact that the polynomial degree in 
each integrand is 10. 

The Boundary Conditions 
Following the derivation of the DAE system that follows from applying the Galerkin method, the 
boundary value conditions of Equation 2 are applied.  These end conditions then take 
precedence over those in Equation 5.  Thus we replace the first and last equations by the 
corresponding boundary value equations.  After this replacement the DAE system 
can be written as 0Uy Vy w′ + − =  .  The first and last rows of U are zero.  The 
remaining rows are those of M .  The first and last rows of V are replaced by the 
values of the boundary value coefficients from Equation 2.  The remaining rows are 
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those of P .  The vector w  is p  except in the first and last components that correspond to the 

values ( ),d x t  at the boundaries.  A technical point here is that the boundary conditions imply 

that the first and last rows and V  and w  may depend on t  even though the remaining rows or 
components do not. 
 
During the integration of the DAE there is a requirement to solve a linear algebraic system with 
a coefficient matrix A U Vγ= + . The value of γ  depends on details of the integration, including 
step-size and order of the backward differentiation formulas, [4].  The boundary values must be 
specified so that for some range of values for γ  the banded matrix A  is non-singular.  This 
property defines the DAE to be an index 1 problem.  Existing DAE software such as DDASLX, [5], 
translated into CNL, is used for its solution.  According to the LAPACK definition and data 
structure6 banded matrix for a 7 A, the upper and lower bandwidth of  is 5 and the matrix 
bandwidth is 11.  The fact that A is banded implies that efficient algorithms for solving banded 
matrix linear system problems can be applied.  There is also a requirement to compute the 
residual function of the DAE ( ), , 0F y y t Uy Vy w′ ′= + − =    .  Since A , U andV  have the same 

banded properties, Level-2 BLAS 8

( ), ,F y y t′ 

, namely the CLAPACK version of SGBMV, are used for 
computing these matrix-vector products in the right-hand side of . 

 
For starting the integration it is necessary to have initial values of the coefficient set 0y y=  .  

For this we need to represent the initial data in terms of the Hermite piecewise quintic 

coefficients.  To that end we compute the local contribution ( ): ( )u p x x dxβ= ∫ .  With this 

available we compute the least-squares solution for the initial coefficients by minimizing 

( ) 2
0( ( ) )Tp x x y dxβ−∫  .  The particular choice that minimizes this least-squares condition is 

given by solving 0M y u=  after accumulation over local contributions over all subintervals.  This 

solution is obtained by using the left and right boundary conditions as equality constraints and 
the remaining rows as least squares equations.  This solution for 0y  is used as the starting 

values for the coefficients of the integration.   
 
For the Black-Scholes equation the vector u  is typically not integrated exactly.  It costs very 
little to increase the degree of the Gauss-Legendre formula, so the degree used in building the 
matrices is a parameter of the software.  This process does not provide the time derivatives 0y′ .  

The values for 0y′  are computed using the regularization method given in Appendix II of [10].  

There are cases where the initial values 0y  should be first provided from basic principles 

without relying on the least-squares estimation process outlined above.  This information can 
be communicated using function imsl_f_feynman_kac together with optional argument 
IMSL_FCN_INIT (see [12]). 

                                                      
6 http://www.netlib.org/lapack/lug/node124.html 
7 http://en.wikipedia.org/wiki/Band_matrix 
8 http://www.netlib.org/lapack/lug/node145.html 

http://www.netlib.org/lapack/lug/node124.html�
http://www.netlib.org/lapack/lug/node124.html�
http://en.wikipedia.org/wiki/Band_matrix�
http://www.netlib.org/lapack/lug/node145.html�
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Section 2 – Some Black-Scholes Examples 
As mentioned, the reasons for using the Hermite quintic basis elements are their small 
truncation error and the smoothness of the intrinsic partial derivatives at an evaluation time.  
There is no significant additional expense to obtain the partials.  Their shapes are illustrated 
with a pair of Vanilla Options using the Black-Scholes model of Equation 3.  The intrinsic third 
partial derivative or Greek (speed) is not a smooth function.  One could re-do the finite element 
model using Hermite-seven degree splines.  These will have three continuous intrinsic partial 
derivatives, including speed.  We believe it is not likely that accurate values of speed are 
required by financial analysts. 
 
 

 
 
 

 
Figure 2. Numerical results with intrinsic greeks for European Call 

 
 
 
 

----- σ =0.4, r = 0.1, Expiry =0.5 Years, Strike = 40.0 

European Call Value, f  European Call, /xf f x= ∂ ∂  or ∆ = Delta 

European Call, xxf  or Γ =Gamma 

----- Same data as for Call Value, f  

----- Same data as for f  
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Values of Black-Scholes PDE Coefficients 0.2, 0.1, 0.5, 40, 0r T E Dσ = = = = =  
Requested Integration Accuracy atol = rtol = 610−  
Number of Intervals 100 
Number of Evaluations9 281, 24  and Factorizations 

Table 1. Black-Scholes Equation Solution, European Call.  See [7], p. 116 

 
 

 
 

 
Figure 3. More Numerical Results of Intrinsic Greeks with European Call 

 

                                                      
9 This is the number of evaluations of the residual DAE function ( ), ,F y y t Uy Vy w′ ′= + −     and the  
number of solve steps after a banded matrix factorization.  The boundary conditions are given by a  
3 3×  identity matrix at both ends and respective values [0,0,0]Td =  at the left and  

( )
max[ ,1,0]r T t Td x Ee− −= −  at the right end. 

European Call, tf−  or ThetaΘ =  European Call, txf  or Charm 

European Call, txxf  or Color 

----- Same data as for f  

----- Same data as for f  

----- Same data as for Call Value, f  
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Figure 4. Numerical Results with Intrinsic Greeks for European Put 

 

 
Values of Black-Scholes PDE Coefficients 0.4, 0.1, 0.5, 10, 0r T E Dσ = = = = =  
Requested Integration Accuracy atol=rtol= 610−  
Number of Intervals 100 
Number of Evaluations10 316, 27  and Factorizations 

Table 2. Black-Scholes Equation Solution, European Put.  See [1], p. 176 

                                                      
10 This is the number of evaluations of the residual DAE function ( ), ,F y y t Uy Vy w′ ′= + −     and the  
number of solve steps after a banded matrix factorization.  The boundary conditions are given by  
respective values [ 1,0]Td = −  at the left end and [0,0,0]Td =  at the right end. 
 

European Put Value, f  European Put, /xf f x= ∂ ∂  or ∆ = Delta 

European Put, xxf  or Γ =Gamma 

----- σ =0.4, r = 0.1, Expiry =0.5 Years, Strike = 10.0 

----- Same data as for Put Value, f  

----- Same data as for f  
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Figure 5. More Numerical Results of Intrinsic Greeks with European Put 

 

The evaluation of the value or intrinsic Greeks does not give all the function information 
commonly used by financial analysts.  For example there are variational equations in the Black-

Scholes model that may be required.  Two common ones are ,f f
r σ
∂ ∂
∂ ∂

.  These are known as Rho 

and Vega.  They can be integrated as additional variational equations, e. g. [7], pp. 126-132.  For 
constant interest rates and volatility factors an elementary approach is to use divided 
differences but with care to choose the optimal value of the difference. 
 
The following example shows some numerical results for a plain Vanilla European Put  
(Source code ). The data for this put in the Black-Scholes model are listed in Table 3. 
 
 
 

European Put, txxf  or Color 

----- Same data as for f  

----- Same data as for f  

----- Same data as for Put Value, f  

http://www.roguewave.com/resources/white-papers.aspx?examples=fkac_wpaper_chap2_example.c�
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Parameter Value 
Volatility σ  0.4 
Interest rate r  0.1 
Time to Maturity 3 months, 6 months 
Strike Price E  10.0 
Dividend D  0 

Table 3. Parameters for Plain Vanilla European Put 

For plain Vanilla European Puts, the Black-Scholes Equation has an analytical solution. Setting 
2log( / ) ( / 2): S E r Ta

T
σ

σ
+ + ∆

=
∆

, 

where :T T t∆ = −  denotes the time to expiry, the value of the put at stock price S  and time 
point t  is given by 

( , ) ( ) ( )r Tf S t S a Ee a Tσ− ∆= − Φ − + Φ − + ∆ . 
Here, ( )Φ ⋅  is the standard normal distribution function. 
The numerical values are compared with these analytical solutions. 
 

European Option Premium for Vanilla Put, 3 and 6 Months Prior to Expiry 
       Number of equally spaced spline knots: 101 
       Number of unknowns: 303 
       Strike= 10.00, sigma= 0.40, Interest Rate= 0.10 
       Environment: SPARC(64-bit), Solaris 10 
       Compliler: C-compiler from Sun Studio 12 
       Integration time (in CPU secs): 0.850879 
 
                                     3 months              6 months 
       Stock price   Formula       PDE   Formula        PDE 
                    0.0   9.75310   9.75310   9.51229   9.51229 
                    2.0   7.75310   7.75310   7.51229   7.51229 
                    4.0   5.75310   5.75310   5.51282   5.51282 
                    6.0   3.75689   3.75689   3.55829   3.55829 
                    8.0   1.90243   1.90243   1.91810   1.91810 
                  10.0   0.66939   0.66938   0.87033   0.87033 
                  12.0   0.16751   0.16751   0.34769   0.34769 
                  14.0   0.03262   0.03262   0.12792   0.12792 
                  16.0   0.00539   0.00539   0.04484   0.04484 
 
                              Greeks at 3 months 
       Stock price   Put value     Delta    Gamma     Theta    Charm    Color 
                    0.0       9.7531  -1.0000     0.0000  -0.9753  -0.0000   0.0000 
                    2.0       7.7531  -1.0000    -0.0000  -0.9753  -0.0000  -0.0000 
                    4.0       5.7531  -1.0000     0.0000  -0.9753  -0.0003  -0.0015 
                    6.0       3.7569  -0.9901     0.0221  -0.9062  -0.1472  -0.2415 
                    8.0       1.9024  -0.8135     0.1677   0.0176  -0.7194  -0.0651 
                  10.0       0.6694  -0.4110     0.1945   1.0780  -0.1750   0.4087 
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                  12.0       0.1675  -0.1278     0.0871   0.8336   0.2872   0.0383 
                  14.0       0.0326  -0.0282     0.0231   0.3195   0.1886  -0.0823 
                  16.0      0.0054  -0.0050   0.0045   0.0842   0.0616  -0.0405 
 
                                         Greeks at 6 months 
       Stock price   Put value    Delta    Gamma     Theta    Charm     Color 
                    0.0      9.5123  -1.0000     0.0000  -0.9512   -0.0000   0.0000 
                    2.0      7.5123  -1.0000     0.0000  -0.9512   -0.0000  -0.0000 
                    4.0      5.5128  -0.9983     0.0049  -0.9443   -0.0199  -0.0464 
                    6.0      3.5583  -0.9316     0.0777  -0.6910   -0.2802  -0.1679 
                    8.0      1.9181  -0.6811     0.1578   0.0713   -0.3954    0.0755 
                  10.0      0.8703  -0.3752     0.1341   0.6105   -0.1207    0.1477 
                  12.0      0.3477  -0.1678     0.0739   0.6157    0.0819    0.0507 
                  14.0      0.1279  -0.0658     0.0323   0.4020    0.1115   -0.0101 
                  16.0      0.0448  -0.0239     0.0124   0.2116    0.0755   -0.0206 

                                    Table 4. Numerical results for Plain Vanilla European Put 

Section 3 – A Non-Linear Forcing Term for American Options 
An approximate solution of the American Option (exercise at any time) is obtained by a forcing 
or source term, [7], (2.40)-(2.41): 
 

( ) ( ) ( ) ( )
2 ,

, ( , ) ( , , ), , , { , .}
2

0, max( ,0)
0, max( ,0)

∂
+ + − = = =

∂
= ∀ > −
< ∀ = −

t x xx t

x t ff x t f f x t f f x t f x T p x f etc
t

f K x
f K x

σ
µ κ φ

φ
φ

 

 
We use the particular forcing function ( /( ( ))) , 1, 0 1rK f K x µφ ε ε µ ε= − + − − ≥ < <<  for 
evaluating the American Put option, as suggested in [8].  Our experiments lead to the values 

2µ =  and  310ε −=  as workable parameters. The value 1µ =  was used in [8]. 
 
It is necessary to evaluate the contribution of partial derivatives of the Jacobian matrix of the 

integral term p φβ= ∫ 

 .  Focus on a typical interval, say the first one [ ]1 2,x x .  Using the Gauss-

Legendre formulas yields a local contribution 
 

( ) ( )

( ) ( )

1

1

, ,

( /( , ( )))

k j k k
k

k j k k k
k

h w x f x t

h rK w x f x t K x µ

β φ

β ε ε

=

− + − −

∑

∑

 

  

 

 
The values ,k kw x are the weights and translated abscissas for the G-L formula.  For this interval 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 4 0 1 1 2 2

2 2
2 5 3 6, 1 1 1f x t y b z y b z b z b z h b z h b zhy hy y y= + − + − + −− +  
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From this we differentiate with respect to the iy  in this single interval.  The contributions from 

all the intervals are accumulated as an outer step. 
 

 
 
 

 
 

This non-linear forcing term is useful for obtaining modest accuracy of the value of the 
American put function and related Greeks or partials of the function.  It has the primary 
attribute of leading to a DAE that is solved with reasonable efficiency.  Alternative methods 
appear to be relatively expensive or do not yield the Greeks without resorting to divided 
differences.  On the other hand the amount of accuracy that can be obtained with this forcing 
term may be limited.  This is difficult to measure without an alternative source or tables for 
comparison.  There is 2-4 place agreement with tables found in [1], p. 176, and [9], p. 127.  It is 

possible that (more expensive) adaptive quadrature for p φβ= ∫ 

  would be helpful to get 

accurate results in the solution.  That was not investigated.   
 
These graphics show the option value and two of the Greeks for the American Put example 
presented by [9], Table 1, p. 127.   
 

 

 
Figure 6. Value of American Put Option Over One Year 
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Figure 7. The Value of Delta on the American Put Over One Year 

 

 
Figure 8. The Value of Theta on the American Put 
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The following table lists some numerical values of the put and its greeks shown graphically in 
Figures 6 – 8 (Source code). 
 

American Option Premium for Vanilla Put, 3 and 6 Months Prior to Expiry 
       Number of equally spaced spline knots: 101 
       Number of unknowns: 303 
       Strike= 40.00, sigma= 0.40, Interest Rate= 0.06 
       Environment: SPARC(64-bit), Solaris 10 
       Compiler: C-compiler from Sun Studio 12 
       Integration time (in CPU secs): 51.041613 
 
       Stock price                 Put Value 
                                3 months        6 months 
                  10.0       30.00000       30.00000 
                  20.0       20.00000       20.00000 
                  30.0       10.02310       10.25323 
                  40.0         2.92329         3.97848 
                  50.0         0.51123         1.28028 
                  60.0         0.06272         0.36811 
                  70.0         0.00625         0.09991 
                  80.0         0.00056         0.02644 
                  90.0         0.00005         0.00657 
 
                                          Greeks at 3 months 
       Stock price   Put value      Delta     Gamma      Theta 
                  10.0     30.0000   -1.0000      0.0000    0.0000 
                  20.0     20.0000   -1.0000     -0.0000   -0.0000 
                  30.0     10.0231   -0.9586      0.0402     0.5501 
                  40.0       2.9233   -0.4410      0.0511     5.3133 
                  50.0       0.5112   -0.0997      0.0176     3.1959 
                  60.0       0.0627   -0.0139      0.0030     0.8014 
                  70.0       0.0063   -0.0015      0.0003     0.1288 
                  80.0       0.0006   -0.0001      0.0000     0.0163 
                  90.0       0.0000   -0.0000      0.0000     0.0018 
 
                                          Greeks at 6 months 
       Stock price   Put value       Delta    Gamma      Theta 
                  10.0     30.0000   -1.0000      0.0000    -0.0000 
                  20.0     20.0000   -1.0000      0.0000     0.0000 
                  30.0     10.2532   -0.8505      0.0451     1.1019 
                  40.0      3.9785    -0.4191      0.0367     3.4490 
                  50.0      1.2803    -0.1538      0.0171     2.8736 
                  60.0      0.3681    -0.0472      0.0058     1.4925 
                  70.0      0.0999    -0.0132      0.0017     0.6123 
                  80.0      0.0264    -0.0035      0.0005     0.2201 
                  90.0      0.0066    -0.0010      0.0001     0.0678 

                                    Table 5. Numerical results for American option with forcing term 

http://www.roguewave.com/resources/white-papers.aspx?examples=fkac_wpaper_chap3_example.c�
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Abstract

Methods are given for numerically solving a generalized version of the Feynman-Kac partial differential equation.  The solution is expressed as a linear combination of piece-wise Hermite quintic polynomials.  This twice-differentiable representation has the attributes of being a high-order method that allows easy evaluation of the solution and certain of its partial derivatives.  The time-dependent solution coefficients are computed by finite element Galerkin procedures.  Boundary values and initial conditions are required.  


Many significant problems in financial modeling can be expressed as particular choices of coefficients, initial conditions, and boundary values.  That fact allows this Feynman-Kac solver to be used in many financial modeling applications.  These include the Black-Scholes models with European type or American type exercise opportunities on Calls or Puts.


Introduction


This report
 describes mathematical and numerical software methods for solving the generalized Feynman-Kac
 partial differential equation
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Equation 1. Feynman-Kac (F-K) Equation with Additional Terms
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The equation is generally solved by integrating backwards, starting at
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 is a terminal condition.  Numerical values are computed on a compact interval
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.  Boundary conditions are required:
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Equation 2. F-K Vector Boundary Conditions


The boundary conditions can be vectors of dimension 1, 2 or 3.  Details on their form and smoothness requirements are given below in the section on boundary conditions.


This F-K equation includes a number of interesting models as special cases.  One of our primary interests is the Black-Scholes equation for the value
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Equation 3. Black-Scholes Model, a Special Case of F-K


Here 
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is the instantaneous risk-free interest rate, 
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is the continuous dividend of the instrument, and
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is the continuous positive volatility
 of that instrument.  There are also boundary conditions, as in Equation 2, which will be defined and used as required. 


A part of this report gives numerical results for particular choices occurring in the Black-Scholes model. The CNL functions imsl_f_feyman_kac and imsl_f_feynman_kac_evaluate (documented in [12]) are used to compute these models.


Section 1 – Finite Elements and Galerkin Methods


The mathematical methods we use for solving F-K equations are well-known and tested (See [2], p.89).  We give a detailed description of the finite elements and the construction of the matrices that arise when solving the Differential-Algebraic equations (DAE) for the solution.


The Finite Elements


This development begins with a grid of points or a partition of the interval 
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.  We see that it is a decomposition of the interval into
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, on each subinterval, the unknown solution is given by a Hermite quintic polynomial. An issue that we do not discuss is placement of these grid points.  The development given here is a more general method than that found in [11].  


The polynomial is represented by six basis polynomials.  Thus in the interval
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the function and its first three derivatives are given by
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Equation 4. Partial Derivatives of the Piecewise Solution


For our purpose the values
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are time-dependent coefficients associated with that interval.  The local error term is 
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Equation 5. Hermite Quintic Basis Functions and Three Derivatives 
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Figure 1. Graphs of Hermite Basis Functions and Two Derivatives


During progression from one interval to the next, there is overlap with three coefficients from the adjacent interval.  This observation and the formulas for the derivatives show that for each fixed
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is continuous at the interior grid points and has two continuous derivatives with respect to
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.  Formulas for the piece-wise quadratic third derivatives are included here, even though that function is no longer generally continuous at the interior points.  This third derivative function may be of interest to users.  The total number of parameters on this grid is
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.  The rationale for choosing this set of elements is based on these observations:


· Since the local error term is of order
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, this translates into fewer unknowns than a finite difference method.  Typically there is high accuracy when using even a modest-sized grid.  This should result in efficient computational algorithms since the size of the system of differential-algebraic equations and thus the associated linear algebra will be of a smaller dimension.  There is also special banded structure for the matrices of the linear algebra.  This allows for the use of tailored banded matrix linear system solvers and matrix-vector products.


· The functions and intrinsic continuous partial derivatives 
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 are available by direct evaluation of the solution and its derivative functions.  These additional partial derivative values are often required by users and they can be obtained at essentially no extra cost in computing time.  In the case of the Black-Scholes model these functions include many of The Greeks
. The CNL function imsl_f_feynman_kac_evaluate can compute these derivatives, which we call the Intrinsic Greeks. Evaluation can occur for any set of values of 
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 at a given 
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.  There is no resulting sub-problem such as interpolation.  The evaluator does that for the user.


· For some applications it is necessary to interpolate in the orthogonal direction for the solution as a function of 
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 with 
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 fixed. A way to do this is assemble values 
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. Then perform Hermite cubic interpolation at any set of values within this grid of 
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 values.  This 
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To interpolate at any 

[image: image45.wmf][


]


1


,


ii


ttt


+


Î


 compute





[image: image46.wmf](


)


(


)


(


)


(


)


(


)


(


)


(


)


010111


1


ˆˆˆˆ


,11


,


,,


/,,.


iiii


i


iiiii


iii


fxtfbzfbzfbzfbz


f


fxt


ttttt


ztttetc


t


++


+


¢


=+-+-


¢


D-DD=-


¶


¢


=-D=


¶




· The complexity of these representations and the quintic basis functions are a concern.  Verifying the formulas was aided by the use of algebraic manipulation software.  The Hermite quintic formulas have been coded in imsl_f_feynman_kac_evaluate.  Testing with the Black-Scholes equation has yielded results consistent with analytic solutions. 


The Galerkin Process and Matrix Assembly


Using a development similar to that of [2], p. 116, write the F-K equation in divergence form
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By adding the piece-wise definitions we may arrange the unknown solution function as the series 
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.  The coefficient functions are defined by re-labeling: 
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 etc.  Then impose the Galerkin orthogonality conditions
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.   Expand and integrate by parts the third term in each expression to yield
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Collect all terms after performing this integration to get five matrices contributing to the DAE
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where      
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The integration is approximated using Gauss-Legendre (G-L) quadrature normalized to the interval
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 nor will it depend on any coefficient in the F-K equation.  This means it will only have to be computed once.  To exactly integrate this symmetric matrix an order 6 G-L formula is used on each subinterval.  This is because the error term for G-L quadrature has a factor involving the 12-th derivative.  This will be identically zero on each subinterval. However using just an order 5 formula gives an error term involving the 10-th derivative which is a non-zero constant.  [See [3], (8.5.6), p. 391.]  The user can reset the order of the G-L formula to a higher or lower value to deal with particular behavior in the remaining coefficients.  Note that the exact form of the polynomial representation for 
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 is not an issue.  Only the 6 evaluations are required to integrate the leading term 
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With the particular basis of quintic splines, the only non-zero value of 
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. Notice that the boundary conditions have not yet been used in formulating the DAE.  We then consider the intermediate problem DAE
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Equation 6. DAE of Coefficients -- No Boundary Conditions Provided


For computational efficiency it is important to note when the matrix 
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 is a case where there is no time dependence in the accumulated element matrices.  Also note that in this problem an order 6 G-L formula exactly integrates each term of the matrix 

[image: image74.wmf]P


 for the Black-Scholes model with constant 

[image: image75.wmf]{,}


r


s


.  This follows from the fact that the polynomial degree in each integrand is 10.


The Boundary Conditions


Following the derivation of the DAE system that follows from applying the Galerkin method, the boundary value conditions of Equation 2 are applied.  These end conditions then take precedence over those in Equation 5.  Thus we replace the first and last equations by the corresponding boundary value equations.  After this replacement the DAE system can be written as 
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are zero.  The remaining rows are those of 
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are replaced by the values of the boundary value coefficients from Equation 2.  The remaining rows are those of 
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During the integration of the DAE there is a requirement to solve a linear algebraic system with a coefficient matrix 
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 depends on details of the integration, including step-size and order of the backward differentiation formulas, [4].  The boundary values must be specified so that for some range of values for 
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 is non-singular.  This property defines the DAE to be an index 1 problem.  Existing DAE software such as DDASLX, [5], translated into CNL, is used for its solution.  According to the LAPACK definition and data structure
 for a banded matrix
, the upper and lower bandwidth of 
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 is 5 and the matrix bandwidth is 11.  The fact that 
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is banded implies that efficient algorithms for solving banded matrix linear system problems can be applied.  There is also a requirement to compute the residual function of the DAE 
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 have the same banded properties, Level-2 BLAS 
, namely the CLAPACK version of SGBMV, are used for computing these matrix-vector products in the right-hand side of 
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For starting the integration it is necessary to have initial values of the coefficient set 
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.  For this we need to represent the initial data in terms of the Hermite piecewise quintic coefficients.  To that end we compute the local contribution 
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.  The particular choice that minimizes this least-squares condition is given by solving 
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 after accumulation over local contributions over all subintervals.  This solution is obtained by using the left and right boundary conditions as equality constraints and the remaining rows as least squares equations.  This solution for 
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 is used as the starting values for the coefficients of the integration.  


For the Black-Scholes equation the vector 
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 is typically not integrated exactly.  It costs very little to increase the degree of the Gauss-Legendre formula, so the degree used in building the matrices is a parameter of the software.  This process does not provide the time derivatives 
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 are computed using the regularization method given in Appendix II of [10].  There are cases where the initial values 
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 should be first provided from basic principles without relying on the least-squares estimation process outlined above.  This information can be communicated using function imsl_f_feynman_kac together with optional argument IMSL_FCN_INIT (see [12]).


Section 2 – Some Black-Scholes Examples


As mentioned, the reasons for using the Hermite quintic basis elements are their small truncation error and the smoothness of the intrinsic partial derivatives at an evaluation time.  There is no significant additional expense to obtain the partials.  Their shapes are illustrated with a pair of Vanilla Options using the Black-Scholes model of Equation 3.  The intrinsic third partial derivative or Greek (speed) is not a smooth function.  One could re-do the finite element model using Hermite-seven degree splines.  These will have three continuous intrinsic partial derivatives, including speed.  We believe it is not likely that accurate values of speed are required by financial analysts.
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Figure 2. Numerical results with intrinsic greeks for European Call

		Values of Black-Scholes PDE Coefficients
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		Number of Intervals

		100



		Number of Evaluations
 and Factorizations

		281, 24





Table 1. Black-Scholes Equation Solution, European Call.  See [7], p. 116
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Figure 3. More Numerical Results of Intrinsic Greeks with European Call


[image: image163.wmf]xx


f


[image: image164.wmf]G=




[image: image165.wmf]f


[image: image166.wmf]tx


f


[image: image115.emf][image: image116.emf]

[image: image167.wmf]t


f


-




[image: image168.wmf]Theta


Q=


[image: image117.emf]

Figure 4. Numerical Results with Intrinsic Greeks for European Put



		Values of Black-Scholes PDE Coefficients
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		Number of Intervals

		100



		Number of Evaluations
 and Factorizations

		316, 27





Table 2. Black-Scholes Equation Solution, European Put.  See [1], p. 176
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Figure 5. More Numerical Results of Intrinsic Greeks with European Put



The evaluation of the value or intrinsic Greeks does not give all the function information commonly used by financial analysts.  For example there are variational equations in the Black-Scholes model that may be required.  Two common ones are
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.  These are known as Rho and Vega.  They can be integrated as additional variational equations, e. g. [7], pp. 126-132.  For constant interest rates and volatility factors an elementary approach is to use divided differences but with care to choose the optimal value of the difference.


The following example shows some numerical results for a plain Vanilla European Put 
(Source code ). The data for this put in the Black-Scholes model are listed in Table 3.


		Parameter

		Value



		Volatility 
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		0.4



		Interest rate 
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		0.1



		Time to Maturity

		3 months, 6 months



		Strike Price 
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		10.0



		Dividend 
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		0





Table 3. Parameters for Plain Vanilla European Put


For plain Vanilla European Puts, the Black-Scholes Equation has an analytical solution. Setting
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 denotes the time to expiry, the value of the put at stock price 
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Here, 

[image: image133.wmf]()


F×


 is the standard normal distribution function.

The numerical values are compared with these analytical solutions.


European Option Premium for Vanilla Put, 3 and 6 Months Prior to Expiry


       Number of equally spaced spline knots: 101


       Number of unknowns: 303


       Strike= 10.00, sigma= 0.40, Interest Rate= 0.10


       Environment: SPARC(64-bit), Solaris 10


       Compliler: C-compiler from Sun Studio 12


       Integration time (in CPU secs): 0.850879


                                     3 months              6 months


       Stock price   Formula       PDE   Formula        PDE


                    0.0   9.75310   9.75310   9.51229   9.51229


                    2.0   7.75310   7.75310   7.51229   7.51229


                    4.0   5.75310   5.75310   5.51282   5.51282


                    6.0   3.75689   3.75689   3.55829   3.55829


                    8.0   1.90243   1.90243   1.91810   1.91810


                  10.0   0.66939   0.66938   0.87033   0.87033


                  12.0   0.16751   0.16751   0.34769   0.34769


                  14.0   0.03262   0.03262   0.12792   0.12792


                  16.0   0.00539   0.00539   0.04484   0.04484


                              Greeks at 3 months


       Stock price   Put value     Delta    Gamma     Theta    Charm    Color


                    0.0       9.7531  -1.0000     0.0000  -0.9753  -0.0000   0.0000


                    2.0       7.7531  -1.0000    -0.0000  -0.9753  -0.0000  -0.0000


                    4.0       5.7531  -1.0000     0.0000  -0.9753  -0.0003  -0.0015


                    6.0       3.7569  -0.9901     0.0221  -0.9062  -0.1472  -0.2415


                    8.0       1.9024  -0.8135     0.1677   0.0176  -0.7194  -0.0651


                  10.0       0.6694  -0.4110     0.1945   1.0780  -0.1750   0.4087


                  12.0       0.1675  -0.1278     0.0871   0.8336   0.2872   0.0383


                  14.0       0.0326  -0.0282     0.0231   0.3195   0.1886  -0.0823


                  16.0      0.0054  -0.0050   0.0045   0.0842   0.0616  -0.0405


                                         Greeks at 6 months


       Stock price   Put value    Delta    Gamma     Theta    Charm     Color


                    0.0      9.5123  -1.0000     0.0000  -0.9512   -0.0000   0.0000


                    2.0      7.5123  -1.0000     0.0000  -0.9512   -0.0000  -0.0000


                    4.0      5.5128  -0.9983     0.0049  -0.9443   -0.0199  -0.0464


                    6.0      3.5583  -0.9316     0.0777  -0.6910   -0.2802  -0.1679


                    8.0      1.9181  -0.6811     0.1578   0.0713   -0.3954    0.0755


                  10.0      0.8703  -0.3752     0.1341   0.6105   -0.1207    0.1477


                  12.0      0.3477  -0.1678     0.0739   0.6157    0.0819    0.0507


                  14.0      0.1279  -0.0658     0.0323   0.4020    0.1115   -0.0101

                  16.0      0.0448  -0.0239     0.0124   0.2116    0.0755   -0.0206


                                    Table 4. Numerical results for Plain Vanilla European Put


Section 3 – A Non-Linear Forcing Term for American Options


An approximate solution of the American Option (exercise at any time) is obtained by a forcing or source term, [7], (2.40)-(2.41):
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We use the particular forcing function 
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 for evaluating the American Put option, as suggested in [8].  Our experiments lead to the values 
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It is necessary to evaluate the contribution of partial derivatives of the Jacobian matrix of the integral term 
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.  Focus on a typical interval, say the first one 
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.  Using the Gauss-Legendre formulas yields a local contribution




[image: image141.wmf](


)


(


)


(


)


(


)


1


1


,,


(/(,()))


kjkk


k


kjkkk


k


hwxfxt


hrKwxfxtKx


m


bf


bee


=


-+--


å


å


%%


%%%




The values
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are the weights and translated abscissas for the G-L formula.  For this interval
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From this we differentiate with respect to the 
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 in this single interval.  The contributions from all the intervals are accumulated as an outer step.
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This non-linear forcing term is useful for obtaining modest accuracy of the value of the American put function and related Greeks or partials of the function.  It has the primary attribute of leading to a DAE that is solved with reasonable efficiency.  Alternative methods appear to be relatively expensive or do not yield the Greeks without resorting to divided differences.  On the other hand the amount of accuracy that can be obtained with this forcing term may be limited.  This is difficult to measure without an alternative source or tables for comparison.  There is 2-4 place agreement with tables found in [1], p. 176, and [9], p. 127.  It is possible that (more expensive) adaptive quadrature for 
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 would be helpful to get accurate results in the solution.  That was not investigated.  


These graphics show the option value and two of the Greeks for the American Put example presented by [9], Table 1, p. 127.  
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Figure 6. Value of American Put Option Over One Year
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Figure 7. The Value of Delta on the American Put Over One Year
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Figure 8. The Value of Theta on the American Put


The following table lists some numerical values of the put and its greeks shown graphically in Figures 6 – 8 (Source code).


American Option Premium for Vanilla Put, 3 and 6 Months Prior to Expiry


       Number of equally spaced spline knots: 101


       Number of unknowns: 303


       Strike= 40.00, sigma= 0.40, Interest Rate= 0.06

       Environment: SPARC(64-bit), Solaris 10


       Compiler: C-compiler from Sun Studio 12


       Integration time (in CPU secs): 51.041613


       Stock price                 Put Value


                                3 months        6 months


                  10.0       30.00000       30.00000


                  20.0       20.00000       20.00000


                  30.0       10.02310       10.25323


                  40.0         2.92329         3.97848


                  50.0         0.51123         1.28028


                  60.0         0.06272         0.36811


                  70.0         0.00625         0.09991


                  80.0         0.00056         0.02644


                  90.0         0.00005         0.00657


                                          Greeks at 3 months


       Stock price   Put value      Delta     Gamma      Theta


                  10.0     30.0000   -1.0000      0.0000    0.0000


                  20.0     20.0000   -1.0000     -0.0000   -0.0000


                  30.0     10.0231   -0.9586      0.0402     0.5501


                  40.0       2.9233   -0.4410      0.0511     5.3133


                  50.0       0.5112   -0.0997      0.0176     3.1959


                  60.0       0.0627   -0.0139      0.0030     0.8014


                  70.0       0.0063   -0.0015      0.0003     0.1288


                  80.0       0.0006   -0.0001      0.0000     0.0163


                  90.0       0.0000   -0.0000      0.0000     0.0018


                                          Greeks at 6 months


       Stock price   Put value       Delta    Gamma      Theta


                  10.0     30.0000   -1.0000      0.0000    -0.0000


                  20.0     20.0000   -1.0000      0.0000     0.0000


                  30.0     10.2532   -0.8505      0.0451     1.1019


                  40.0      3.9785    -0.4191      0.0367     3.4490


                  50.0      1.2803    -0.1538      0.0171     2.8736


                  60.0      0.3681    -0.0472      0.0058     1.4925


                  70.0      0.0999    -0.0132      0.0017     0.6123


                  80.0      0.0264    -0.0035      0.0005     0.2201


                  90.0      0.0066    -0.0010      0.0001     0.0678


                                    Table 5. Numerical results for American option with forcing term
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� The C version of the VNI software [12] was converted from Fortran 95 by Martin Preiss, Rogue Wave Software, Germany.  Preiss re-edited this white paper based on an early draft that used a Fortran 95 implementation for development of the algorithm.


� This work benefited by discussions with Fred Krogh, Gerald Hanweck, John Brophy and �Martin Preiss.


� http://en.wikipedia.org/wiki/Feynman-Kac_formula


� In the F-K equation identify the general term� EMBED Equation.DSMT4  ���with the Black-Scholes volatility �factor multiplied by the price—i.e.� EMBED Equation.DSMT4  ���.


� http://en.wikipedia.org/wiki/The_Greeks


� http://www.netlib.org/lapack/lug/node124.html


� http://en.wikipedia.org/wiki/Band_matrix


� http://www.netlib.org/lapack/lug/node145.html


� This is the number of evaluations of the residual DAE function � EMBED Equation.DSMT4  ��� and the �number of solve steps after a banded matrix factorization.  The boundary conditions are given by a �� EMBED Equation.DSMT4  ��� identity matrix at both ends and respective values � EMBED Equation.DSMT4  ��� at the left and �� EMBED Equation.DSMT4  ��� at the right end.


� This is the number of evaluations of the residual DAE function � EMBED Equation.DSMT4  ��� and the �number of solve steps after a banded matrix factorization.  The boundary conditions are given by �respective values � EMBED Equation.DSMT4  ��� at the left end and � EMBED Equation.DSMT4  ��� at the right end.
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